

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 9

Exercise: Recursion and Combinatorial Problems
This document defines the lab for the "Algorithms – Fundamentals (Java)" course @ Software University.

Please submit your solutions (source code) to all below-described problems in Judge.

1. Reverse Array
Write a program that reverses and prints an array. Use recursion.

Examples

Input Output

1 2 3 4 5 6 6 5 4 3 2 1

2. Nested Loops To Recursion
Write a program that simulates the execution of n nested loops from 1 to n which prints the values of all its iteration

variables at any given time on a single line. Use recursion.

Examples

Input Output
Solution with nested loops

(assuming n is positive)

2

1 1

1 2

2 1

2 2

int limit = 2;

for (int i1 = 1; i1 <= limit; i1++) {
 for (int i2 = 1; i2 <= limit; i2++) {
 System.out.println(i1 + " " + i2);
 }
}

3

1 1 1
1 1 2

1 1 3

1 2 1

1 2 2

…

3 2 3

3 3 1

3 3 2

3 3 3

int limit = 3;

for (int i1 = 1; i1 <= limit; i1++) {
 for (int i2 = 1; i2 <= limit; i2++) {
 for (int i3 = 1; i3 <= limit; i3++) {
 System.out.println(i1 + " " + i2 + " " + i3);
 }
 }
}

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/trainings/4176/algorithms-fundamentals-with-java-may-2023
https://judge.softuni.bg/Contests/2453/Recursion-and-Combinatorial-Problems-Exercise

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 9

3. Combinations with Repetition

Write a recursive program for generating and printing all combinations with duplicates of k elements from a set of n

elements (k <= n). In combinations, the order of elements doesn’t matter, therefore (1 2) and (2 1) are the same

combination, meaning that once you print/obtain (1 2), (2 1) is no longer valid.

Examples

Input Output Comments

3

2

1 1

1 2

1 3

2 2

2 3

3 3

• n=3 => we have a set of three elements {1, 2, 3}

• k=2 => we select two elements out of the three each time

• Duplicates are allowed, meaning (1 1) is a valid combination.

5

3

1 1 1

1 1 2

1 1 3

1 1 4

1 1 5

1 2 2

…

3 5 5

4 4 4

4 4 5

4 5 5

5 5 5

Select 3 elements out of 5 – {1, 2, 3, 4, 5}, a total of 35 combinations

(1 2 1) is not valid as it’s the same as (1 1 2)

4. Tower of Hanoi

Your task is to solve the famous Tower of Hanoi puzzle using recursion.

In this problem, you have three rods (let’s call them source, destination, and spare). Initially, there are n disks, all

placed on the source rod like in the picture below:

Your objective is to move all disks from the source rod to the destination rod. There are several rules:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://en.wikipedia.org/wiki/Tower_of_Hanoi

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 9

1) Only one disk can be moved at a time

2) Only the topmost disk on a rod can be moved

3) A disk can only be placed on top of a larger disk or on an empty rod

Step 1. Choose Appropriate Data Structures

First, we need to decide how to model the problem in our program. The size of a disk can be represented by an integer

number – the larger the number, the larger the disk.

How about the rods? According to the rules outlined above, we can either take a disk from the top of the rod or place

a disk on top of it. This is an example of Last-In-First-Out (LIFO), therefore, an appropriate structure to represent a

rod would be Stack we need three of them to be precise – the source, the destination, and the spare.

Step 2. Setup

Now that we have an idea of what structures we’ll be using, it’s time for the initial setup. Before solving the puzzle for

any number of disks, let’s solve it with 3 and use hardcoded values. With 3 disks, it will be easier to keep track of the

steps we’ll take.

Initially, the destination and spare are empty. In the source, we need to have the numbers 1, 2, and 3, 1 being on top.

Step 3. Breaking down the Problem

The Tower of Hanoi is solved by breaking it down into sub-problems. What we’ll try to do is:

1) Move all disks from source to destination starting with the largest (bottom disk)

a) If the bottom disk is equal to 1, we can simply move it

b) If the bottom disk is larger than 1

I. move all disks above it (starting from bottom – 1) to the spare rod

II. move the bottom disk to the destination

III. finally, move the disks now on spare to destination (back on top of the bottom disk)

In essence, steps 1.b.i and 1.b.iii repeat step 1, the only difference is that we’re viewing different rods as a source,

destination, and spare.

Step 4. Solution

Looking at step 3 above, it’s apparent that we’ll need a method that takes 4 arguments: the value of the bottom disk

and the three rods (stacks).

We need an if-statement to check if disk == 1 (the bottom of our recursion). If that’s the case, we’ll pop an element

from the source and push it to the destination. We can do it on a single line like this:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 9

In the else clause, we need to do three things: 1) move all disks from bottomDisk - 1 from source to spare; 2) move

the bottomDisk from source to destination; 3) move all disks from bottomDisk – 1 from spare to destination.

Complete the TODOs in the above picture, by calling MoveDisks recursively. If you did everything correctly, this should

be it! Now it’s time to test it.

Step 5. Check Solution with Hardcoded Value

In order to check this solution, let’s make the three stacks static and declare an additional variable that will keep track

of the current number of steps taken.

We’ll need a method that prints the contents of all stacks, so we know which disk is where after each step:

After running the program, you should now see each step of the process like this:

The Tower of Hanoi puzzle always takes exactly 2n – 1 steps. With n == 3, all seven steps should be shown and in the

end all disks should end up on the destination rod.

Using the output of your program and the debugger, follow each step and try to understand how this recursive

algorithm works. It’s much easier to see this with three disks.

Step 6. Remove Hardcoded Values and Retest

If everything went well and you’re confident you’ve understood the process, you can replace 3 with input from the

user, just read a number from the console.

Test with several different values, and make sure that the steps taken are 2n – 1 and that all disks are successfully

moved from source to destination.

Here is the full example with 3 disks:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 9

Examples

Input Output

3 Source: 3, 2, 1

Destination:

Spare:

Step #1: Moved disk

Source: 3, 2

Destination: 1

Spare:

Step #2: Moved disk

Source: 3

Destination: 1

Spare: 2

Step #3: Moved disk

Source: 3

Destination:

Spare: 2, 1

Step #4: Moved disk

Source:

Destination: 3

Spare: 2, 1

Step #5: Moved disk

Source: 1

Destination: 3

Spare: 2

Step #6: Moved disk

Source: 1

Destination: 3, 2

Spare:

Step #7: Moved disk

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 9

Source:

Destination: 3, 2, 1

Spare:

5. Combinations without Repetition

Modify the solution from the problem 3 program to skip duplicates, e.g. (1 1) is not valid.

Examples

Input Output Comments

3

2

1 2

1 3

2 3

• n=3 => we have a set of three elements {1, 2, 3}

• k=2 => we select two elements out of the three each time

• Duplicates are not allowed, meaning (1 1) is not a
valid combination.

5

3

1 2 3

1 2 4

1 2 5

1 3 4

1 3 5

1 4 5

2 3 4

2 3 5

2 4 5

3 4 5

Select 3 elements out of 5 – {1, 2, 3, 4, 5},

a total of 10 combinations

6. Connected Areas in a Matrix

Let’s define a connected area in a matrix as an area of cells in which there is a path between every two cells.

Write a program to find all connected areas in a matrix.

On the console, print the total number of areas found, and on a separate line some info about each of the areas – its

position (top-left corner) and size.

Order the areas by size (in descending order) so that the largest area is printed first. If several areas have the same

size, order them by their position, first by the row, then by the column of the top-left corner. So, if there are two

connected areas with the same size, the one which is above and/or to the left of the other will be printed first.

On the first line, you will get the number of rows.

On the second line, you will get the number of columns.

The rest of the input will be the actual matrix.

Examples

Example Layout Output

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 9

4

9

---*---*-

---*---*-

---*---*-

----*-*--

Total areas found: 3

Area #1 at (0, 0), size: 13

Area #2 at (0, 4), size: 10

Area #3 at (0, 8), size: 5

5

10

-----*--

-----*--

*--*****--

-----*--

-----*--

Total areas found: 4

Area #1 at (0, 1), size: 10

Area #2 at (0, 8), size: 10

Area #3 at (0, 4), size: 6

Area #4 at (3, 4), size: 6

Hints

• Create a method to find the first traversable cell which hasn’t been visited. This would be the top-left corner

of a connected area. If there is no such cell, this means all areas have been found.

• You can create a class to hold info about a connected area (its position and size). Additionally, you can

implement Comparable and store all areas found in a TreeSet.

7. Cinema

Write a program that prints all of the possible distributions of a group of friends in a cinema hall. In the first line,

you will be given all of the friends‘ names separated by a comma and space. Until you receive the command

"generate" you will be given some of those friends‘s names and a number of the place that they want to have.

(format: "{name} - {place}") So here comes the tricky part. Those friends want only to sit in the place that they

have chosen. They cannot sit in other places. For more clarification see the examples below.

Output

Print all the possible ways to distribute the friends having in mind that some of them want a particular place and

they will sit there only. The order of the output does not matter.

Constrains

• The friend‘s names and the number of the place will always be valid.

Examples

Input Output Comments

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 9

Peter, Amy, George, Rick

Amy - 1

Rick - 4

generate

Amy Peter George Rick

Amy George Peter Rick

Amy only wants to sit on
the first seat and Rick
wants to sit on the
fourth, so we only switch
the other friends

Garry, Liam, Teddy, Anna,
Buddy, Simon

Buddy - 3

Liam - 5

Simon - 1

generate

Simon Garry Buddy Teddy Liam Anna

Simon Garry Buddy Anna Liam Teddy

Simon Teddy Buddy Garry Liam Anna

Simon Teddy Buddy Anna Liam Garry

Simon Anna Buddy Garry Liam Teddy

Simon Anna Buddy Teddy Liam Garry

8. Word Cruncher

Write a program that receives some strings and forms another string that is required. In the first line, you will be

given all of the strings separated by a comma and space. On the next line, you will be given the string that needs to

be formed from the given strings. For more clarification see the examples below.

Input

• On the first line you will receive the strings (separated by comma and space ", ").

• On the next line you will receive the target string.

Output

• Print each of them found ways to form the required string as shown in the examples.

Constrains

• There might be repeating elements in the input.

Examples

Input Output

text, me, so, do, m, ran

somerandomtext

so me ran do m text

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 9 of 9

this, th, is, Word, cruncher, cr, h, unch, c, r, un, ch, er

Wordcruncher

Word c r un ch er

Word c r unch er

Word cr un c h er

Word cr un ch er

Word cr unch er

Word cruncher

9. School Teams
Write a program that receives the names of girls and boys in a class and generates all possible ways to create teams

with 3 girls and 2 boys. Print each team on a separate line separated by a comma and space ", " (first the girls

then the boys). For more clarification see the examples below

Note: "Linda, Amy, Katty, John, Bill" is the same as "Linda, Amy, Katty, Bill, John"; so print

only the first case

Input

• On the first line you will receive the girl‘s names separated by a comma and space ", ".

• On the second line you will receive the boy‘s names separated by a comma and space ", ".

Output

• On separate lines print all the possible teams with exactly 3 girls and 2 boys separated by comma and space

and starting with the girls.

Constrains

• There will always be at least 3 girls and 2 boys in the input.

Examples

Input Output

Linda, Amy, Katty

John, Bill

Linda, Amy, Katty, John, Bill

Lisa, Yoana, Marta, Rachel

George, Garry, Bob

Lisa, Yoana, Marta, George, Garry

Lisa, Yoana, Marta, George, Bob

Lisa, Yoana, Marta, Garry, Bob

Lisa, Yoana, Rachel, George, Garry

Lisa, Yoana, Rachel, George, Bob

Lisa, Yoana, Rachel, Garry, Bob

Lisa, Marta, Rachel, George, Garry

Lisa, Marta, Rachel, George, Bob

Lisa, Marta, Rachel, Garry, Bob

Yoana, Marta, Rachel, George, Garry

Yoana, Marta, Rachel, George, Bob

Yoana, Marta, Rachel, Garry, Bob

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercise: Recursion and Combinatorial Problems
	1. Reverse Array
	Examples

	2. Nested Loops To Recursion
	Examples

	3. Combinations with Repetition
	Examples

	4. Tower of Hanoi
	Step 1. Choose Appropriate Data Structures
	Step 2. Setup
	Step 3. Breaking down the Problem
	Step 4. Solution
	Step 5. Check Solution with Hardcoded Value
	Step 6. Remove Hardcoded Values and Retest
	Examples

	5. Combinations without Repetition
	Examples

	6. Connected Areas in a Matrix
	Examples
	Hints

	7. Cinema
	Output
	Constrains
	Examples

	8. Word Cruncher
	Input
	Output
	Constrains
	Examples

	9. School Teams
	Input
	Output
	Constrains
	Examples

