

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 11

Lab: Searching, Sorting and Greedy Algorithms
This document defines the lab for the "Algorithms – Fundamentals (Java)" course @ Software University.

Please submit your solutions (source code) to all below-described problems in Judge.

1. Binary Search

Implement an algorithm that finds the index of an element in a sorted array of integers in logarithmic time.

Examples

Input Output Comments

1 2 3 4 5

1

0 Index of 1 is 0.

-1 0 1 2 4

1

2 Index of 1 is 2.

Hints

First, if you’re not familiar with the concept, read about binary search on Wikipedia. Here you can find a tool that

shows visually how the search is performed.

In short, if we have a sorted collection of comparable elements, instead of doing a linear search (which takes linear

time), we can eliminate half the elements at each step and finish in logarithmic time. Binary search is a divide-and-

conquer algorithm; we start at the middle of the collection, if we haven’t found the element there, there are three

possibilities:

• The element we’re looking for is smaller – then look to the left of the current element, we know all

elements to the right are larger.

• The element we’re looking for is larger – look to the right of the current element.

• The element is not present, traditionally, return -1 in that case.

Start by defining a class with a method:

Inside the method, define two variables defining the bounds to be searched and a while loop:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/trainings/4176/algorithms-fundamentals-with-java-may-2023
https://judge.softuni.bg/Contests/2454/Searching-Sorting-and-Greedy-Algorithms-Lab
https://en.wikipedia.org/wiki/Binary_search_algorithm
http://www.dave-reed.com/book/Chapter8/search.html

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 11

Inside the while loop, we need to find the midpoint:

If the key is to the left of the midpoint, move the right bound. If the key is to the right of the midpoint, move the left

bound:

2. Merge Sort

Sort an array of elements using the famous merge sort.

Examples

Input Output

5 4 3 2 1 1 2 3 4 5

1 4 2 -1 0 -1 0 1 2 4

Hints

Create your mergeSort method in Main class:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 11

First, if we have reached the bottom of the recursion (all elements have been split into partitions of 1), we return the

whole array (1 element):

Extract the index, at the middle of the array, get the lengths and initialize the two partitions of the array:

Fill the partitions with values from the main array:

Recursively, do the same for each of the two partitions of the array. Each partition gets split into two until you reach

partitions of one element:

From here on, it's the backtrack of the recursion. The main logic after the split of the partitions.

This is the main index, which will be used to follow the progress on the main array, and these are the indexes for the

two partitions, which will be used to follow the progress on them:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 11

Here starts the main comparing algorithm. The loop's condition consists of both indexes, being compared to their

corresponding partition lengths. Both partition indexes will be increased until one of the arrays is expired. In other

words... This loop will go through both partitions, simultaneously, and will finish only when, one of the two indexes,

reaches its partition's length.

Here is the comparison part. We compare the current element from the first partition, with the current element from

the second partition.

In case the first partition's current element is lower, by comparison, it will be put in the current position

of the main array. If that is NOT the case, the second partition's current element will be put on

the current position of the main array. If you switch the comparing symbol, you might achieve a descending order in

the sort. Currently, the algorithm sorts in ASCENDING order.

When the loop finishes, naturally, one of the two partitions should be expired. In other words. One of the two

partitions' values has been traversed totally. That would mean that the other array would have some leftover values,

which is why we need to store even them. Due to the fact we have nothing to compare them with, we just store them

in the remaining positions of the main array:

At the end the other exit point of the recursive algorithm. Return the processed array:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 11

3. Quicksort

Sort an array of elements using the famous quicksort.

Examples

Input Output

5 4 3 2 1 1 2 3 4 5

1 4 2 -1 0 -1 0 1 2 4

Hints

You can learn about the Quicksort algorithm from Wikipedia. A great tool for visualizing the algorithm (along with

many others) is available at Visualgo.net.

The algorithm in short:

• Quicksort takes unsorted partitions of an array and sorts them

• We choose the pivot

o We pick the first element from the unsorted partition and move it in such a way, that all smaller

elements are on its left and all greater, to its right

• With the pivot moved to its correct place, we now have two unsorted partitions – one to the left of it and one

to the right

• Call the procedure recursively for each partition

• The bottom of the recursion is when a partition has a size of 1, which is by definition sorted

First, define the sorting method:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://en.wikipedia.org/wiki/Quicksort
http://visualgo.net/sorting.html

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 11

First, find the pivot index and rearrange the elements, then sort the left and right partitions recursively. Now to choose

the pivot point we need to create a method called partition():

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 11

4. Sum of Coins

Write a program, which gathers a sum of money, using the least possible number of coins. This is the range of possible

coin values:

• { 1, 2, 5, 10, 20, 50 }

You will receive the desired sum. The goal is to reach the sum using as few coins as possible using a greedy approach.

We’ll assume that each coin value and the desired sum are integers. There is a skeleton, which you can download

from Judge. Use the Main class in the skeleton.

Examples

Input Output Comments

Coins: 1, 2, 5, 10, 20, 50

Sum: 923

Number of coins to take: 21

18 coin(s) with value 50

1 coin(s) with value 20

1 coin(s) with value 2

1 coin(s) with value 1

18*50 + 1*20 + 1*2 + 1*1 =
900 + 20 + 2 + 1 = 923

Coins: 1

Sum: 42

Number of coins to take: 42

42 coin(s) with value 1

Coins: 3, 7

Sum: 11

Error Cannot reach the desired
sum with these coin values

Coins: 1, 2, 5

Sum: 2031154123

Number of coins to take: 406230826

406230824 coin(s) with value 5

1 coin(s) with value 2

1 coin(s) with value 1

The solution should be fast
enough to handle a
combination of small coin
values and a large desired
sum

Coins: 1, 10, 9

Sum: 27

Number of coins to take: 9

2 coin(s) with value 10

7 coin(s) with value 1

The greedy approach
produces a non-optimal
solution (9 coins to take
instead of 3 with a value of 9)

Greedy Approach

For this problem, a greedy algorithm will attempt to take the best possible coin value (which is the largest), then take

the next largest coin value, and so on, until the sum is reached or there are no coin values left. There may be a different

amount of coins to take for each value. In one of the examples above, we had a very large desired sum and relatively

small coin values, which means we’ll need to take a lot of coins. It would not be efficient (and may even cause an

Exception) if we return the result as a List<Integer>. А more practical way to do it is to use a

Map<Integer, Integer>, where the keys are the coin values and the values are the number of coins to take for

the specified coin value. Therefore, in the second example (coin values = { 1 }, sum = 42), instead of returning a list

with 42 elements in it, we’ll return a dictionary with a single key-value pair: 1 => 42.

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 11

Greedy Algorithm Implementation

You are given an implemented main() method with sample data. Your task is to implement the chooseCoins()

method:

Since at each step we’ll try to take the largest value we haven’t yet tried, it would simplify our work to order the coin

values so we can iterate them in descending order:

Now, taking the largest coin value at each step is simply a matter of iterating the list. We’ll need several variables:

• A resulting map

• An index variable

• A variable for the current sum

Since it’s possible to finish the algorithm without reaching the desired sum, we’ll keep track of the current amount

taken in a separate variable (when we’re done, we’ll check it against the desired sum to see if we

got a solution or not).

Having these variables, when do we stop taking coins? There are two possibilities:

• We have reached the desired sum.

• We ran out of coin values .

We can put these two conditions in a while loop like this:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 9 of 11

Inside the body of the while loop, we need to decide how many coins to take of the current value. We take the current

value from the list. We have its index:

So far, we’ve accumulated some amount in the currentSum variable, the difference between targetSum and

currentSum will give us the remaining sum we need to obtain:

So, how many coins do we take? Using integer division, we can just divide remainingSum over the current coin value

to find out:

All we have to do now is put this information in the resulting dictionary as a key-value pair (only if we can take coins

with this value), then increment the current index to move on to the next coin value:

Finally, return the resulting map.

5. Set Cover

Write a program that finds the smallest subset of sets, which contains all elements from a given sequence.

In the Set Cover Problem, we are given two sets - a set of sets (we’ll call it sets) and a universe (a sequence).

The sets contain all elements from the universe and no others, however, some elements are repeated. The task is

to find the smallest subset of sets that contains all elements in the universe. Use the Main class from your

skeleton.

Examples

Input Output

Universe: 1, 2, 3, 4, 5

Number of sets: 4

1

2, 4

5

3

Sets to take (4):

{ 2, 4 }

{ 1 }

{ 5 }

{ 3 }

Universe: 1, 2, 3, 4, 5

Number of sets: 4

1, 2, 3, 4, 5

Sets to take (1):

{ 1, 2, 3, 4, 5 }

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 10 of 11

2, 3, 4, 5

5

3

Universe: 1, 3, 5, 7, 9, 11, 20, 30, 40

Number of sets: 6

20

1, 5, 20, 30

3, 7, 20, 30, 40

9, 30

11, 20, 30, 40

3, 7, 40

Sets to take (4):

{ 3, 7, 20, 30, 40 }

{ 1, 5, 20, 30 }

{ 9, 30 }

{ 11, 20, 30, 40 }

Greedy Approach

Using the greedy approach, at each step, we’ll take the set which contains the most elements present in the universe

which we haven’t yet taken. At the first step, we’ll always take the set with the largest number of elements, but it gets

a bit more complicated afterward. To simplify our job (and not check against two sets at the same time), when taking

a set, we can remove all elements in it from the universe. We can also remove the set from the sets we’re considering.

Greedy Algorithm Implementation

You are given sample input in the main() method, your task is to complete the chooseSets() method:

The method will return a list of arrays, so first thing’s first, initialize the resulting list:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 11 of 11

As discussed in the previous section, we’ll be removing elements from the universe, so we’ll be repeating the next

steps until the universe is empty:

The hardest part is selecting a set. We need to get the set that has the most elements contained in the universe. We

need to find the one with the most elements in the universe:

The above code finds the one set with most elements contained in the universe

Once we have the set we’re looking for, the next steps are trivial. Complete the TODOs below:

This is all, we just need to run the unit tests to make sure we didn’t make a mistake along the way.

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Lab: Searching, Sorting and Greedy Algorithms
	1. Binary Search
	Examples
	Hints

	2. Merge Sort
	Examples
	Hints

	3. Quicksort
	Examples
	Hints

	4. Sum of Coins
	Examples
	Greedy Approach
	Greedy Algorithm Implementation

	5. Set Cover
	Examples
	Greedy Approach
	Greedy Algorithm Implementation

