

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 5

Lab: Introduction to Dynamic Programming
This document defines the lab for the "Algorithms – Fundamentals (C#)" course @ Software University.

Please submit your solutions (source code) to all below-described problems in Judge.

1. Fibonacci
Write a dynamic programming solution for finding nth Fibonacci members.

• F0 = 0

• F1 = 1

Examples

Input Output

20 6765

50 12586269025

2. Move Down/Right
Given a matrix of N by M cells filled with positive integers, find the path from top left to bottom right with the

highest sum of cells by moving only down or right.

Examples

Input Output

3

3

1 1 1

1 1 1

1 1 1

[0, 0] [1, 0] [2, 0] [2, 1] [2, 2]

3

3

1 0 6

8 3 7

2 4 9

[0, 0] [1, 0] [1, 1] [1, 2] [2, 2]

8

7

2 6 1 8 9 4 2

1 8 0 3 5 6 7

[0, 0] [0, 1] [1, 1] [2, 1] [2, 2] [2, 3]
[3, 3] [4, 3] [4, 4] [4, 5] [5, 5] [5, 6]
[6, 6] [7, 6]

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/trainings/4175/algorithms-fundamentals-with-c-sharp-may-2023
https://judge.softuni.org/Contests/2566/Introduction-to-Dynamic-Programming-Lab

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 5

3 4 8 7 2 1 8

0 9 2 8 1 7 9

2 7 1 9 7 8 2

4 5 6 1 2 5 6

9 3 5 2 8 1 9

2 3 4 1 7 2 8

3. Longest Common Subsequence

Considering two sequences S1 and S2, the longest common subsequence is a sequence that is a subsequence of both

S1 and S2. For instance, if we have two strings (sequences of characters), "abc" and "adb", the LCS is "ab" – it is a

subsequence of both sequences and it is the longest (there are two other subsequences – "a" and "b").

Input

• On the first line, you will receive a string – str1 – first string.

• On the second line, you will receive a string – str2 – second string.

Output

• Print the length of the longest common subsequence.

Examples

Input Output

abc

adb

2

ink some beer

drink se ber

10

tree

team

2

Solution

Dynamic Programming Approach

Just like the LIS problem, we can solve the LCS problem by solving sub-problems and keeping track of the solutions to

the sub-problems (memoization). In the LIS problem, we used an array, but here we’ll be comparing two sequences,

therefore, we’ll need a matrix like the one below:

 t e a m

 LCS("", "") LCS("", t) LCS("", te) LCS("", tea) LCS("", team)

t LCS(t, "") LCS(t, t) LCS(t, te) LCS(t, tea) LCS(t, team)

r LCS(tr, "") LCS(tr, t) LCS(tr, te) LCS(tr, tea) LCS(tr, team)

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 5

e LCS(tre, "") LCS(tre, t) LCS(tre, te) LCS(tre, tea) LCS(tre, team)

e LCS(tree, "") LCS(tree, t) LCS(tree, te) LCS(tree, tea) LCS(tree, team)

The rows will represent subsequences (substrings) of the first string ("tree"); the first row will represent a substring

with length 0 (an empty string), and the second row will represent a substring of length 1 ("t"), the third row will

represent a substring of length 2 ("tr"), etc. The last row will represent a substring of length 4 which is the entire string

"tree".

The columns will represent the substrings of the second string ("team"), again starting with an empty string and ending

with the entire string.

In each cell, we’ll enter the length of the LCS of the two substrings – the substring of the first string (the rows) and the

second string (the columns). E.g., in the table above, cells (2, 2) will represent the LCS of "tr" and "te". Note that we

assume that an empty string does not have anything in common with any other string, therefore row 0 and column 0

will be filled with zeros.

Find the LCS for Every Combination of Substrings

We know what to do – create a matrix of integers and calculate the LCS length for each cell. Let’s begin.

The matrix should have 1 more row than the number of characters in the first string and 1 more column than the

number of characters in the second string (the first row and column are the empty substrings). Therefore:

Now, we must iterate each cell of lcs[][] from top to bottom and from left to right and decide what number to put

in that cell. Remember, at each step, we already have the results from previous steps, so we can build on that. We

have two distinct cases:

1) The last character of the first substring is equal to the last character of the second substring.

This means that, compared to the cell which is to the left and up of the current one, the length of the current cell’s

LCS is greater by 1. Why? The cell to the left and up of the current one will hold the LCS of two substrings which are

shorter by 1 than the current substrings; basically, the last character (which is the same) won’t be present. Adding

that same character to both substrings, we’ll obtain the current cell and an LCS greater by 1.

2) The last character of the first substring is different from the last character of the second substring.

We know the LCS of all substrings is shorter than the current ones. The longest LCS so far should be one of two – the

one directly above or the one directly to the left of the current cell. Adding a character to one of the substrings used

to calculate these two LCSs doesn’t have any effect, therefore, the current cell’s LCS is the larger of the two.

Complete the if-statement following the logic above:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 5

Once done, the matrix should be filled with the length of each LCS, like so:

 t e a m

0

LCS("", "") = ""

0

LCS("", t) = ""

0

LCS("", te) = ""

0

LCS("", tea) = ""

0

LCS("", team) = ""

t
0

LCS(t, "") = ""

1

LCS(t, t) = t

1

LCS(t, te) = t

1

LCS(t, tea) = t

1

LCS(t, team) = t

r
0

LCS(tr, "") = ""

1

LCS(tr, t) = t

1

LCS(tr, te) = t

1

LCS(tr, tea) = t

1

LCS(tr, team) = t

e
0

LCS(tre, "") = ""

1

LCS(tre, t) = t

2

LCS(tre, te) = te

2

LCS(tre, tea) = te

2

LCS(tre, team) = te

e
0

LCS(tree, "") = ""

1

LCS(tree, t) = t

2

LCS(tree, te) = te

2

LCS(tree, tea) = te

2

LCS(tree, team) = te

Recover the LCS

Once the table is filled, all we need to do is recover what we need from it. Let’s do this in a separate method,

We iterate the matrix starting from the bottom-right corner until we reach row 0 or column 0. We’ll fill the characters

in a List<char>.

Again, we have two distinct cases:

1) The last characters of the two substrings are the same – add the character to the list and move to the cell

which is to the left and above the current one. The logic is the same as the one we used to fill the matrix.

2) The characters are different – we need to decide where to go next – up or left. We go to the cell which has

the same LCS length as the current one (if both have the same length, it doesn’t matter).

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 5

Finally, since we obtained all the characters in reversed order, we need to reverse the list and return it as a string.

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Lab: Introduction to Dynamic Programming
	1. Fibonacci
	Examples

	2. Move Down/Right
	Examples

	3. Longest Common Subsequence
	Input
	Output
	Examples
	Solution
	Dynamic Programming Approach
	Find the LCS for Every Combination of Substrings
	Recover the LCS

