

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 5

Exercises: Working with Abstraction
This document defines the exercises for the "Java Advanced" course @ Software University. Please submit your

solutions (source code) to all below-described problems in Judge.

1. Card Suit

Create an enumeration type that has as its constants the four suits of a deck of playing cards (CLUBS, DIAMONDS,

HEARTS, SPADES). Iterate over the values of the enumeration type and print all ordinal values and names.

Examples

Input Output

Card Suits Card Suits:
Ordinal value: 0; Name value: CLUBS
Ordinal value: 1; Name value: DIAMONDS
Ordinal value: 2; Name value: HEARTS
Ordinal value: 3; Name value: SPADES

2. Card Rank
Create an enumeration type that has as its constants the thirteen ranks of a deck of playing cards (ACE, TWO,

THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN, KING). Iterate over the values of the enumeration

type and print all ordinal values and names.

Examples

Input Output

Card Ranks Card Ranks:
Ordinal value: 0; Name value: ACE
Ordinal value: 1; Name value: TWO
Ordinal value: 2; Name value: THREE
Ordinal value: 3; Name value: FOUR
Ordinal value: 4; Name value: FIVE
Ordinal value: 5; Name value: SIX
Ordinal value: 6; Name value: SEVEN
Ordinal value: 7; Name value: EIGHT
Ordinal value: 8; Name value: NINE
Ordinal value: 9; Name value: TEN
Ordinal value: 10; Name value: JACK
Ordinal value: 11; Name value: QUEEN
Ordinal value: 12; Name value: KING

3. Cards with Power
Create a program that generates a deck of cards (class Card) that have power. The power of a card is calculated by

adding the power of its rank plus the power of its suit.

Rank powers are as follows: (ACE - 14, TWO - 2, THREE - 3, FOUR - 4, FIVE - 5, SIX - 6, SEVEN - 7, EIGHT - 8, NINE - 9,

TEN - 10, JACK - 11, QUEEN - 12, KING - 13).

Suit powers are as follows: (CLUBS - 0, DIAMONDS - 13, HEARTS - 26, SPADES - 39).

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/modules/59/java-advanced
https://judge.softuni.bg/Contests/1576/Working-with-Abstraction-Exercise

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 5

You will get a command consisting of two lines. On the first line, you will receive the Rank of the card and on the

second line, you will get the suit of the card.

Print the output in the format: "Card name: {card name} of {suit name}; Card power: {power of

rank + power of suit}".

Note

Try using the enumeration types you have created in the previous problems but extending them with constructors

and methods. Try using the Enum.valueOf().

Examples

Input Output

TWO
CLUBS

Card name: TWO of CLUBS; Card power: 2

ACE
SPADES

Card name: ACE of SPADES; Card power: 53

4. Traffic Lights

Implement a simple state machine in the form of a traffic light. Every traffic light has three possible signals - red,

green, and yellow. Each traffic light can be updated, which changes the color of its signal (e.g. if it is currently red, it

changes to green, if it is green it changes to yellow). The order of signals is red -> green -> yellow -> red and so on.

On the first line, you will be given multiple traffic light signals in the format "RED GREEN YELLOW". They may be 3,

more, or less than 3. You need to make as many traffic lights as there are signals in the input.

On the second line, you will receive the n number of times you need to change each traffic light's signal.

Your output should consist of n number of lines, including each updated traffic light's signal. To better understand

the problem, see the example below.

Examples

Input Output

GREEN RED YELLOW
4

YELLOW GREEN RED
RED YELLOW GREEN
GREEN RED YELLOW
YELLOW GREEN RED

RED RED RED GREEN
GREEN GREEN
6

GREEN GREEN GREEN YELLOW YELLOW YELLOW
YELLOW YELLOW YELLOW RED RED RED
RED RED RED GREEN GREEN GREEN
GREEN GREEN GREEN YELLOW YELLOW YELLOW
YELLOW YELLOW YELLOW RED RED RED
RED RED RED GREEN GREEN GREEN

Exercises: Working with Abstraction
 In this section, your job is to download the source code for every problem and refactor it.

5. Jedi Galaxy

Peter is Jedi and so he starts gathering stars to grow stronger.

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/downloads/svn/java-fundamentals/2019-May/Java-OOP/01.%20Java-OOP-Working-with-Abstraction/01.%20Java-OOP-Working-with-Abstraction-Exercise-Resources.zip

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 5

His galaxy is represented as a two-dimensional array. Every cell in the matrix is a star that has a value. Peter starts at

the given col and row. He can move only on the diagonal from the lowest left to the upper right and adds to his score

all the stars (values) from the cells he passes through. Unfortunately, there is always an Evil power that tries to prevent

his success.

Evil power starts at the given row and col and instantly destroys all-stars on the opposite diagonal – From the lowest

right to the upper left.

Peter adds the values only of the stars that are not destroyed by the evil power.

You will receive two integers, separated by space, which represent the two-dimensional array - the first being the
rows and the second being the columns. Then, you must fill the two-dimensional array with increasing integers
starting from 0, and continuing on every row, like this:
first row: 0, 1, 2… m
second row: n+1, n+2, n+3… n + n.

Example:

Peter starts with coordinates row = 5, col = -1. He
must collect all stars with value [20, 16, 12, 8, 4].
Evil starts with coordinates row = 5, col = 5. Evil
destroys all-stars in the range [24, 18, 12, 6, 0].
The star with a value of 12 is the cross point for
Peter and The Evil, so Peter skips the stars and
collects only those who are not in the evil range.

You will also receive multiple pairs of commands
in the form of 2 integers separated by a single
space. The first two integers will represent
Peter’s start coordinates. The second one will
represent the Evil Power’s start coordinates.

The input ends when you receive the command "Let the Force be with you". When that happens, you must

print the value of all-stars that Peter has collected successfully.

Input
• On the first line, you will receive the number N, M -> the dimensions of the matrix. You must then fill the matrix

according to these dimensions.

• On the next several lines you will begin receiving 2 integers separated by a single space, which represent Peter’s

row and col. On the next line, you will receive the Evil Power’s coordinates.

• There will always be at least 2 lines of input to represent at least 1 path of Peter and the Evil force.

• When you receive the command, "Let the Force be with you" the input ends.

Output

• The output is simple. Print the sum of the values from all-stars that Peter has collected.

Constraints
• The dimensions of the matrix will be integers in the range [5, 2000].

• The given rows will be valid integers in the range [0, 2000].

• The given columns will be valid integers in the range [-231 + 1, 231 - 1].

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 5

Input Output

5 5
5 -1
5 5
Let the Force be with you

48

5 5
4 -1
4 5
Let the Force be with you

29

6. Greedy Times
Finally, you have unlocked the safe and reached the treasure! Inside there are all kinds of gems, cash in different
currencies, and gold bullions. Next to you, there is a bag which unfortunately has limited space. You don’t have much
time so you need to take as much wealth as possible! But to get a bigger amount of the most valuable items, you need
to keep the following rules:

• The gold amount in your bag should always be more than or equal to the gem amount at any time

• The gem amount should always be more than or equal to the cash amount at any time

If you read an item that breaks one of these rules you should not put it in the bag. You should always be careful

not to exceed the overall bag’s capacity because it will tear down and you will lose everything! You will receive the

content of the safe on a single line in the format "{item} {quantity}" pairs, separated by whitespace. You need

to gather only three types of items:

• Cash - All three letter items

• Gem - All items which end on "Gem" (at least 4 symbols)

• Gold - this type has only one item with the name - "Gold"

Each item that does not fall in one of the above categories is useless and you should skip it. Reading item’s names

should be CASE-INSENSITIVE, except when the item is Cash. You should aggregate items’ quantities that have the

same name.

If you’ve kept the rules you should escape successfully with a bag full of wealth. Now it’s time to review what you

have managed to get out of the safe. Print all the types ordered by the total amount in descending order. Inside a

type, order the items first alphabetically in descending order and then by their amount in ascending order. Use the

format described below for each type.

Input

• On the first line, you will receive a number that represents the capacity of the bag.

• On the second line, you will receive a sequence of item and quantity pairs.

Output

Print only the types from which you have items in the bag ordered by Total Amount descending. Inside a type

order, the items are first alphabetically in descending order and then by an amount in ascending order. Use the

following format for each type:

"<{type}> ${total amount}"

"##{item} - {amount}" - each item on new line

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 5

Constraints

• Bag’s max capacity will always be a positive number.

• All quantities will be positive integer in the range [0 … 2100000000].

• Each item of type gem will have a name - at least 4 symbols.

• Time limit: 0.1 sec. Memory limit: 16 MB.

Examples

Input Output

150
Gold 28 Rubygem 16 USD 9 GBP 8

<Gold> $28
##Gold - 28
<Gem> $16
##Rubygem - 16
<Cash> $9
##USD - 9

24000010
USD 1030 Gold 300000 EmeraldGem 900000 Topazgem 290000
CHF 280000 Gold 10000000 JPN 10000 Rubygem 10000000
KLM 3120010

<Gold> $10300000
##Gold - 10300000
<Gem> $10290000
##Topazgem - 290000
##Rubygem - 10000000
<Cash> $3410010
##KLM - 3120010
##JPN - 10000
##CHF - 280000

80345
RubyGem 70000 JAV 10960 Bau 60000 Gold 80000

<Gold> $80000
##Gold - 80000

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercises: Working with Abstraction
	1. Card Suit
	Examples

	2. Card Rank
	Examples

	3. Cards with Power
	Note
	Examples

	4. Traffic Lights
	Examples

	Exercises: Working with Abstraction
	5. Jedi Galaxy
	Input
	Output
	Constraints

	6. Greedy Times
	Input
	Output
	Constraints
	Examples

