
Programming Fundamentals with Python: Exam Preparation
Please submit your solutions (source code) to all the below-described problems in Judge.
1. Computer Store
Write a program that prints you a receipt for your new computer. You will receive the parts' prices (without tax) until you receive what type of customer this is - special or regular. Once you receive the type of customer you should print the receipt.
The taxes are 20% of each part's price you receive.
If the customer is special, he has a 10% discount on the total price with taxes.
If a given price is not a positive number, you should print "Invalid price!" on the console and continue with the next price.
If the total price is equal to zero, you should print "Invalid order!" on the console.
Input
· You will receive numbers representing prices (without tax) until the command "special" or "regular":
Output
· The receipt should be in the following format:
"Congratulations you've just bought a new computer!
Price without taxes: ${total price without taxes}
Taxes: ${total amount of taxes}

Total price: ${total price with taxes}"
Note: All prices should be displayed to the second digit after the decimal point! The discount is applied only on the total price. Discount is only applicable to the final price!
Examples
	Input
	Output

	1050
200
450
2
18.50
16.86
special
	Congratulations you've just bought a new computer!
Price without taxes: $1737.36
Taxes: $347.47

Total price: $1876.35

				Comment

	1050 – valid price, total 1050
200 – valid price, total 1250
…
16.86 – valid price, total 1737.36
We receive special
Price is positive number, so it is valid order
Price without taxes is 1737.36
Taxes: 20% from 1737.36 = 347.47
Final price = 1737.36 + 347.47 = 2084.83
Additional 10% discount for special customers
2084.83 – 10% = 1876.35

	Input
	Output

	1023
15
-20
-5.50
450
20
17.66
19.30
regular
	Invalid price!
Invalid price!
Congratulations you've just bought a new computer!
Price without taxes: $1544.96
Taxes: $308.99

[bookmark: _GoBack]Total price: $1853.95

	regular
	Invalid order!

2. Shoot for the Win
Write a program that helps you keep track of your shot targets. You will receive a sequence with integers, separated by a single space, representing targets and their value. Afterward, you will receive indices until the "End" command is given, and you need to print the targets and the count of shot targets.
Every time you receive an index, you need to shoot the target on that index, if it is possible.
Every time you shoot a target, its value becomes -1, and it is considered a shot. Along with that, you also need to:
· Reduce all the other targets, which have greater values than your current target, with its value.
· Increase all the other targets, which have less than or equal value to the shot target, with its value.
Keep in mind that you can't shoot a target, which is already shot. You also can't increase or reduce a target, which is considered a shot.
When you receive the "End" command, print the targets in their current state and the count of shot targets in the following format:
"Shot targets: {count} -> {target1} {target2}… {targetn}"
Input / Constraints
· On the first line of input, you will receive a sequence of integers, separated by a single space – the targets sequence.
· On the following lines, until the "End" command, you be receiving integers each on a single line – the index of the target to be shot.
Output
· The format of the output is described above in the problem description.
Examples
	Input
	Output
	Comments

	24 50 36 70
0
4
3
1
End
	Shot targets 3 -> -1 -1 130 -1
	First, we shoot the target on index 0. It becomes equal to -1, and we start going through the rest of the targets. Since 50 is more than 24, we reduce it to 26 and 36 to 12 and 70 to 46. The sequence looks like that:
-1 26 12 46
The following index is invalid, so we don't do anything. Index 3 is valid, and after the operations, our sequence should look like that:
-1 72 58 -1
Then we take the first index with value 72, and our sequence looks like that:
-1 -1 130 -1
Then we print the result after the "End" command.

	30 30 12 60 54 66
5
2
4
0
End
	Shot targets: 4 -> -1 120 -1 66 -1 -1
	

3. Heart Delivery
Valentine's day is coming, and Cupid has minimal time to spread some love across the neighborhood. Help him with his mission!
You will receive a string with even integers, separated by a "@" - this is our neighborhood. After that, a series of Jump commands will follow until you receive "Love!". Every house in the neighborhood needs a certain number of hearts delivered by Cupid so it can celebrate Valentine's day. The integers in the neighborhood indicate those needed hearts.
Cupid starts at the position of the first house (index 0) and must jump by a given length. The jump commands will be in this format: "Jump {length}".
Every time he jumps from one house to another, the needed hearts for the visited house are decreased by 2:
· If the needed hearts for a certain house become equal to 0, print on the console "Place {house_index} has Valentine's day."
· If Cupid jumps to a house where the needed hearts are already 0, print on the console "Place {house_index} already had Valentine's day."
· Keep in mind that Cupid can have a larger jump length than the size of the neighborhood, and if he does jump outside of it, he should start from the first house again (index 0).
For example, we are given this neighborhood: 6@6@6. Cupid is at the start and jumps with a length of 2. He will end up at index 2 and decrease the needed hearts by 2: [6, 6, 4]. Next, he jumps again with a length of 2 and goes outside the neighborhood, so he goes back to the first house (index 0) and again decreases the needed hearts there: [4, 6, 4].
Input
· On the first line, you will receive a string with even integers separated by "@" – the neighborhood and the number of hearts for each house.
· On the next lines, until "Love!" is received, you will be getting jump commands in this format: "Jump {length}".
Output
In the end, print Cupid's last position and whether his mission was successful or not:
· "Cupid's last position was {last_position_index}."
· If each house has had Valentine's day, print:
· "Mission was successful."
· If not, print the count of all houses that didn't celebrate Valentine's Day:
· "Cupid has failed {houseCount} places."
Constraints
· The neighborhood's size will be in the range [1…20].
· Each house will need an even number of hearts in the range [2 … 10].
· Each jump length will be an integer in the range [1 … 20].
Examples
	Input
	Output
	Comments

	10@10@10@2
Jump 1
Jump 2
Love!
	Place 3 has Valentine's day.
Cupid's last position was 3.
Cupid has failed 3 places.
	Jump 1 ->> [10, 8, 10, 2]
Jump 2 ->> [10, 8, 10, 0] so we print "Place 3 has Valentine's day."
The following command is "Love!" so we print Cupid's last position and the outcome of his mission.

	2@4@2
Jump 2
Jump 2
Jump 8
Jump 3
Jump 1
Love!
	Place 2 has Valentine's day.
Place 0 has Valentine's day.
Place 0 already had Valentine's day.
Place 0 already had Valentine's day.
Cupid's last position was 1.
Cupid has failed 1 places.
	

[image: Logo

Description automatically generated][bookmark: _Hlk24191091]© SoftUni – softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.
[image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:]
Follow us:
Page 4 of 4

image5.png
€

image6.png
You

)

image7.png

image8.png

image9.png

image1.png

image11.png

image20.png

image30.png
€
| 1

image40.png

image50.png
€

image60.png
You

)

image70.png

image80.png

image90.png

image10.png

image2.png

image3.png
€
| 1

image4.png

