

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 13

Exercise: Advanced Functions
Problems for exercises and homework for the "JavaScript Advanced" course @ SoftUni Global.

Submit your solutions in the SoftUni Judge System.

1. Sort Array

Write a function that sorts an array with numeric values in ascending or descending order, depending on an

argument that is passed to it.

You will receive a numeric array and a string as arguments to the function in your code.

 If the second argument is asc, the array should be sorted in ascending order (smallest values first).

 If it is desc, the array should be sorted in descending order (largest first).

Input

You will receive a numeric array and a string as input parameters.

Output

The output should be the sorted array.

Examples

Input Output

[14, 7, 17, 6, 8], 'asc' [6, 7, 8, 14, 17]

[14, 7, 17, 6, 8], 'desc' [17, 14, 8, 7, 6]

2. Argument Info

Write a function that displays information about the arguments which are passed to it (type and value) and a

summary about the number of each type in the following format:

`{argument type}: {argument value}`

Print each argument description on a new line. At the end print a tally with counts for each type in descending

order, each on a new line in the following format:

`{type} = {count}`

If two types have the same count, use order of appearance.

Do NOT print anything for types that do not appear in the list of arguments.

Input

You will receive a series of arguments passed to your function.

Output

Print on the console the type and value of each argument passed into your function.

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 13

Example

Input

'cat', 42, function () { console.log('Hello world!'); }

Output

string: cat

number: 42

function: function () { console.log('Hello world!'); }

string = 1

number = 1

function = 1

3. Fibonacci

Write a JS function that when called, returns the next Fibonacci number, starting at 0, 1. Use a closure to keep the

current number.

Input

There will be no input.

Output

The output must be a Fibonacci number and must be returned from the function.

Examples

Sample execution

let fib = getFibonator();
console.log(fib()); // 1
console.log(fib()); // 1
console.log(fib()); // 2
console.log(fib()); // 3
console.log(fib()); // 5
console.log(fib()); // 8
console.log(fib()); // 13

4. Breakfast Robot

Your task is to write the management software for a breakfast chef robot - it needs to take orders, keep track of

available ingredients and output an error if something’s wrong. The cooking instructions have already been

installed, so your module needs to plug into the system and only take care of orders and ingredients. And since this

is the future and food is printed with nano-particle beams, all ingredients are microelements - protein,

carbohydrate, fat, and flavours. The library of recipes includes the following meals:

 apple - made with 1 carbohydrate and 2 flavour

 lemonade - made with 10 carbohydrate and 20 flavour

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 13

 burger - made with 5 carbohydrate, 7 fat and 3 flavour

 eggs - made with 5 protein, 1 fat and 1 flavour

 turkey - made with 10 protein, 10 carbohydrate, 10 fat and 10 flavour

The robot receives instructions either to restock the supply, cook a meal, or report statistics. The input consists of

one of the following commands:

 restock <microelement> <quantity> - increases the stored quantity of the given microelement

 prepare <recipe> <quantity> - uses the available ingredients to prepare the given meal

 report - returns information about the stored microelements, in the order described below, including zero

elements

The robot is equipped with quantum field storage, so it can hold an unlimited quantity of ingredients, but there is

no guarantee there will be enough available to prepare a recipe, in which case an error message should be returned.

Their availability is checked in the order in which they appear in the recipe, so the error should reflect the first

requirement that was not met.

Submit a closure that returns the management function. The management function takes one parameter.

Input

Instructions are passed as a string argument to your management function. It will be called several times per

session, so the internal state must be preserved throughout the entire session.

Output

The return value of each operation is one of the following strings:

 Success - when restocking or completing cooking without errors

 Error: not enough <ingredient> in stock - when the robot couldn’t muster enough

microelements

 protein={qty} carbohydrate={qty} fat={qty} flavour={qty} - when a report is requested, in

a single string

Constraints

 Recipes and ingredients in commands will always have valid names.

Examples

Execution

let manager = solution ();

console.log (manager ("restock flavour 50")); // Success

console.log (manager ("prepare lemonade 4")); // Error: not enough carbohydrate in
stock

Input Output

restock flavour 50

prepare lemonade 4

restock carbohydrate 10

restock flavour 10

Success

Error: not enough carbohydrate in stock

Success

Success

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 13

prepare apple 1

restock fat 10

prepare burger 1

report

Success

Success

Success

protein=0 carbohydrate=4 fat=3 flavour=55

Input Output

prepare turkey 1

restock protein 10

prepare turkey 1

restock carbohydrate 10

prepare turkey 1

restock fat 10

prepare turkey 1

restock flavour 10

prepare turkey 1

report

Error: not enough protein in stock

Success

Error: not enough carbohydrate in stock

Success

Error: not enough fat in stock

Success

Error: not enough flavour in stock

Success

Success

protein=0 carbohydrate=0 fat=0 flavour=0

5. Functional Sum

Write a function that adds a number passed to it to an internal sum and returns itself with its internal sum set to

the new value, so it can be chained functionally.

Hint: Overwrite toString() of the function.

Input

Your function needs to take one numeric argument.

Output

Your function needs to return itself with an updated context.

Example

Input Output

add(1) 1

add(1)(6)(-3) 4

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 13

6. Monkey Patcher *

Your employer placed you in charge of an old forum management project. The client requests new functionality, but

the legacy code has high coupling, so you don’t want to change anything, for fear of breaking everything else. You

know which values need to be accessed and modified, so it’s time to monkey patch!

Write a program to extend a forum post record with voting functionality. It needs to have the options to upvote,

downvote, and tally the total score (positive minus negative votes). Furthermore, to prevent abuse, if a post has

more than 50 total votes, the numbers must be obfuscated – the stored values remain the same, but the reported

amounts of upvotes and downvotes have a number added to them. This number is 25% of the greater number of

votes (positive or negative), rounded up. The actual numbers should not be modified, just the reported amounts.

Every post also has a rating, depending on its score. If positive votes are the overwhelming majority (>66%), the

rating is hot. If there is no majority, but the balance is non-negative and the sum of both votes is more than 100, its

rating is controversial. If the balance is negative, the rating becomes unpopular. If the post has less than 10

total votes, or no other rating is met, its rating is new regardless of balance. These calculations are performed on the

actual numbers.

Your function will be invoked with the call(object, arguments), so treat it as though it is internal for the

object. A forum post, to which the function will be attached, has the following structure:

JavaScript

{

 id: <id>,

 author: <author name>,

 content: <text>,

 upvotes: <number>,

 downvotes: <number>

}

The arguments will be one of the following strings:

 upvote – increase the positive votes by one

 downvote – increase the negative votes by one

 score – report positive and negative votes, balance and rating in an array; obfuscation rules apply

Input

Input will be passed as arguments to your function through a call() invocation.

Output

Output from the report command should be returned as a result of the function in the form of an array of three

numbers and a string, as described above.

Examples

Sample execution

let post = {
 id: '3',
 author: 'emil',

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 13

 content: 'wazaaaaa',
 upvotes: 100,
 downvotes: 100
};
solution.call(post, 'upvote');
solution.call(post, 'downvote');
let score = solution.call(post, 'score'); // [127, 127, 0, 'controversial']
solution.call(post, 'downvote'); // (executed 50 times)
score = solution.call(post, 'score'); // [139, 189, -50, 'unpopular']

Explanation

The post begins at 100/100, we add one upvote and one downvote, bringing it to 101/101. The reported score is
inflated by 25% of the greater value, rounded up (26). The balance is 0, and at least one of the numbers is greater
than 100, so we return an array with the rating 'controversial'.

We downvote 50 times, bringing the score to 101/151, the reported values are inflated by 151*0.25=38 (rounded
up), and since the balance is negative with return an array with rating 'unpopular'.

DOM-Related Problems
The following problems must be solved using DOM manipulation techniques.

Environment Specifics

Please, be aware that every JS environment may behave differently when executing code. Certain things that work

in the browser are not supported in Node.js, which is the environment used by Judge.

The following actions are NOT supported:

 .forEach() with NodeList (returned by querySelector() and querySelectorAll())

 .forEach() with HTMLCollection (returned by getElementsByClassName() and element.children)

 Using the spread-operator (...) to convert a NodeList into an array

 append() in Judge (use only appendChild())

 prepend()

 replaceWith()

 replaceAll()

 closest()

 replaceChildren()

 Always turn the collection into a JS array (forEach, forOf, et.)

If you want to perform these operations, you may use Array.from() to first convert the collection into an array.

7. Simple Calculator

Create a function calculator which returns an object that can modify the DOM. The returned object should support
the following functionality:

 init (selector1, selector2, resultSelector) - initializes the object to work with the elements
corresponding to the supplied selectors.

 add () - adds the numerical value of the element corresponding to selector1 to the numerical value of
the element corresponding to selector2 and then writes the result in the element corresponding
to resultSelector.

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 13

 subtract () - subtracts the numerical value of the element corresponding to selector1 from the
numerical value of the element corresponding to selector2 and then writes the result in the element
corresponding to resultSelector.

Input
There will be no input your function must only provide an object.

Output
Your function should return an object that meets the specified requirements.

Constraints
 All commands will always be valid, there will be no nonexistent or incorrect input.

 All selectors will point to single textbox elements.

 Use the given skeleton to solve this problem.

Sample execution

const calculate = calculator ();
calculate.init ('#num1', '#num2', '#result');

8. Next Article

Write a JS program that sequentially displays articles on a web page when the user clicks a button. You will receive

an array of strings that will initialize the program. You need to return a function that keeps the initial array in its

closure and every time it’s called, it takes the first element from the array and displays it on the web page, inside

"article", in div with ID "content". If there are no more elements left, your function should do nothing.

Your function will be called automatically, there is no need to attach any event listeners.

Input

You will receive an array of strings.

Output

Return a function that sequentially displays the array elements on the web page.

Examples

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 13

9. Task Manager

Use the index.html and app.js files to solve this problem. You have NO permission to directly change the given

HTML code (index.html file).

Your task

Write the missing JavaScript code to make the Task Manager Functionality works as follows:

When the [Add] button is clicked, first you need to validate the inputs. If any of the input fields are empty, the

function doesn’t make anything.

After validating the input fields, you need to add the new task (article) in the "Open" section.

The HTML structure looks like this:

The article should have two buttons "Start" and "Delete". Be careful to set the classes for the buttons and the

parent-div.

When the [Start] button is clicked, you need to move the Task in the section "In Progress". Be careful with the

buttons! The HTML structure looks like this:

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 9 of 13

When the [Delete] button is clicked, the Task (whole article) should be removed from the HTML.

After clicking the [Finish] button, the Task will be completed, and you should move the article to the section

"Complete". The buttons with their parent div-element should be removed.

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 10 of 13

10. Central Cinema *

Use the given skeleton to solve this problem.

Note: You have NO permission to change directly the given HTML (index.html file).

Your Task

Write the missing JavaScript code to make the Central Cinema application work as expected.

Each movie has a Name, Hall and Ticket Price.

When you click the [On Screen] button and only if inputs are all filled and the ticket price value is a number,

then a new list item should be added to the Movies on Screen section. Clear the inputs.

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 11 of 13

The new item should have the following structure:

You should create a li element that contains a span element with the name of the movie, a strong element with

the name of the hall like: `Hall: ${hallName}`, and a div element. Inside the div element, there is a strong

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 12 of 13

element with the ticket price (fixed to the second digit after the decimal point), an input element with a

placeholder containing: "Tickets Sold" and a button [Archive].

When you click the [Archive] button and only if the input for tickets count is filled with a number like:

You should add that item to the Archive section like a list item in the ul, calculating the total profit of the movie like

this:

Use the following format:

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 13 of 13

Here we have a list item containing span element with the name of the movie, strong element with total profit

like: `Total amount: ${total price}`, fixed to the second digit after the decimal point. Add a delete button

[Delete].

When you click the [Delete] button, you should delete the current list item.

 Finally, when we click the [Clear] button delete all li elements from the archive section. No matter how many

archived movies we have the archive section leaves like this:

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercise: Advanced Functions
	1. Sort Array
	Input
	Output
	Examples

	2. Argument Info
	Input
	Output
	Example

	3. Fibonacci
	Input
	Output
	Examples

	4. Breakfast Robot
	Input
	Output
	Constraints
	Examples

	5. Functional Sum
	Input
	Output
	Example

	6. Monkey Patcher *
	Input
	Output
	Examples

	DOM-Related Problems
	7. Simple Calculator
	Input
	Output
	Constraints

	8. Next Article
	Input
	Output
	Examples

	9. Task Manager
	Your task

	10. Central Cinema *
	Your Task

