Exercise: Asynchronous Programming

Problems for exercises and homework for the "JavaScript Applications" course @ SoftUni Global.

Working with Remote Data

For the solution of some of the following tasks, you will need to use an up-to-date version of the local
REST service, provided in the lesson’s resources archive. You can read the documentation here.

1. Bus Stop

Write a JS program that displays arrival times for all buses by a given bus stop ID when a button is clicked. Use the
skeleton from the provided resources.

When the button with ID 'submit’ is clicked, the name of the bus stop appears and the list bellow gets filled with all
the buses that are expected and their time of arrival. Take the value of the input field with id 'stopld'. Submit a GET
request to http://localhost:3030/jsonstore/bus/businfo/:busld (replace the highlighted part with the correct value)
and parse the response. You will receive a JSON object in the format:

stopId: {
name: stopName,
buses: { busId: time, .. }

}

Place the name property as text inside the div with ID 'stopName' and each bus as a list item with text:
"Bus {busId} arrives in {time} minutes"”

Replace all highlighted parts with the relevant value from the response. If the request is not successful, or the
information is not in the expected format, display "Error" as stopName and nothing in the list. The list should be
cleared before every request is sent.

Note: The service will respond with valid data to IDs 1287, 1308, 1327 and 2334.

See examples on the next page.

Examples

Stop ID: 1308

o ,_ © SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:U“i Follow us: O O o @ o @ o Page 1 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://github.com/softuni-practice-server/softuni-practice-server

¥ <div id="stopInfo” style="width:28em
¥ odiv>

<input id="stopld"” type="text">

<fdiv>
¥odiv id="result”:
<div id="stopName"></div>
zul id="buses">
<fdive
<fdive

<label for="stopld”>Stop ID: </label:>

<input id="submit" type="button"” value="Check

onclick="getInfo()

Stop ID:

St. Nedelya sq.

. Bus 4 arrives in 13 minutes
. Bus 12 arrives in 6 minutes
. Bus 18 arrives in 7 minutes

When the button is clicked, the results are displayed in the corresponding elements:

¥odiv id="stopInfo" style="width:280em
P odive.</dive

¥<div id="result”:>

¥<ul id="buses">
<1i>Bus 4 arrives in 13 minutes</1i>
<1i>Bus 12 arrives in 6 minutes</1i>
<1i»>Bus 18 arrives in 7 minutes</1i>
<ful>
<fdive
<fdive

<div id="stoplame":>5t. Nedelya sq.</div>

If an error occurs, the stop name changes to Error:

Stop ID: 11

Error

¥ <div id="stopInfo"” style="width:2@em
Podive.</dive
¥odiv id="result™:
<div id="stopName”>Error</div>
<ul id="buses"></ful>
< fdive
< fdivs

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.
Ll
SoftUni

Follow us: OO@O@O

Page 2 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

2. Bus Schedule

Write a JS program that tracks the progress of a bus on it’s route and announces it inside an info box. The program
should display which is the upcoming stop and once the bus arrives, to request from the server the name of the next
one. Use the skeleton from the provided resources.

The bus has two states — moving and stopped. When it is stopped, only the button “Depart” is enabled, while the
info box shows the name of the current stop. When it is moving, only the button “Arrive” is enabled, while the info
box shows the name of the upcoming stop. Initially, the info box shows "Not Connected" and the "Arrive" button is
disabled. The ID of the first stop is "depot".

When the "Depart" button is clicked, make a GET request to the server with the ID of the current stop to address
http://localhost:3030/jsonstore/bus/schedule/:id (replace the highlighted part with the relevant
value). As a response, you will receive a JSON object in the following format:

stopId {
name: stopName,
next: nextStopId

}

Update the info box with the information from the response, disable the “Depart” button and enable the “Arrive’

button. The info box text should look like this (replace the highlighted part with the relevant value):
Next stop {stopName}

When the "Arrive" button is clicked, update the text, disable the “Arrive” button and enable the “Depart” button.
The info box text should look like this (replace the highlighted part with the relevant value):

Arriving at {stopName}

Clicking the buttons successfully will cycle through the entire schedule. If invalid data is received, show "Error" inside
the info box and disable both buttons.

Examples

Initially, the info box shows "Not Connected" and the arrive button is disabled.

Not Connected

Depart Arive

v <div id="schedule
¥ <div id="info
span class="info">Not Connected</span
fdiv
¥ <div id="controls
input id="depart” value="Depart” type="button” onclick="result.depart()

input id="arrive"” value="Arrive" type="button” onclick="result.arrive()
disabled="true
Jdiv
fdiv

When Depart is clicked, a request is made with the first ID. The info box is updated with the new information and
the buttons are changed:

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:U“i Follow us: O O o @ o @ o Page 3 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

Next stop Depot

Depart Arrive

vodiv id="schedule

¥<div id="info

span class="info">Next stop Depot</span
Jfdiv

¥ <div id="controls
input id="depart” value="Depart” type="button” onclick="result.depart()
disabled="disabled
input id="arrive” value="Arrive” type="button” onclick="result.arrive()

fdiv
Jfdiv

Clicking Arrive, changes the info box and swaps the buttons. This allows Depart to be clicked again, which makes a
new request and updates the information:

Arriving at Depot

Depart Armive

¥ <div id="schedule
¥ odiv id="info
span class="info">Arriving at Depot</span
fdiv
¥ <div id="controls
input id="depart” value="Depart” type="button” onclick="result.depart()

input id="arrive"” value="Arrive" type="button" onclick="result.arrive()
disabled="disabled
fdiv
fdiv

3. Forecaster

Write a program that requests a weather report from a server and displays it to the user.

Use the skeleton from the provided resources.

When the user writes the name of a location and clicks “Get Weather”, make a GET request to the server at
address http://localhost:3030/jsonstore/forecaster/locations. The response will be an array of
objects, with the following structure:

{

name: locationName,
code: locationCode

}

Find the object, corresponding to the name that the user submitted in the input field with ID "location" and use
its code value to make two more GET requests:

e For current conditions, make a request to:
http://localhost:3030/jsonstore/forecaster/today/:code

The response from the server will be an object with the following structure:

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:U“i Follow us: O o @ o @ o Page 4 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

{

name: locationName,
forecast: { low: temp,
high: temp,
condition: condition }

e For a 3-day forecast, make a request to:
http://localhost:3030/jsonstore/forecaster/upcoming/:code
The response from the server will be an object with the following structure:

{

name: locationName,
forecast: [{ low: temp,
high: temp,
condition: condition }, ..]

}

Use the information from these two objects to compose a forecast in HTML and insert it inside the page. Note that
the <div> with ID "forecast" must be set to visible. See the examples for details.

If an error occurs (the server doesn’t respond or the location name cannot be found) or the data is not in the correct
format, display "Error" in the forecast section.

Use the following codes for weather symbols:

e Sunny ☀ // #

e Partly sunny ⛅ // i

e Overcast &ix2601; // @

e Rain &ix2614; // T

e Degrees ° //°
Examples

When the app starts, the forecast div is hidden. When the user enters a name and clicks on the button Get
Weather, the requests being.

Get Weather

P odiv id="request”r.</div

¥ <div id="forecast” style="display:none
Podiv id="current”».</div
P idiv id="upcoming”>..</div
Jdiv

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:U“i Follow us: O O o @ o @ o Page 5 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

S Yok Tt Wt

Current conditions

o1 o New York, USA
= 57197
*5 % Sumny

Three-day forecast

(" @e &

Pandy sty [Ovecrsl

P <div id="request’>..</div
v<div id="forecast” style="display: block;
¥ <div id="current
div class="label”>Current conditions</div
v<div class="forecasts
span class="condition symbol">¥</span
¥ <span class="condition
span class="forecast-data">New York, USA8°/19°Sunny</span
/span
Jdiv
Jdiv
¥ <div id="upcoming
div class="label">Three-day forecast</div
v<div class="forecast-info
v<span class="upcoming
span class="symbol" > 6°/17°Partly sunny</span

/span
P ..</span
P ..</span
Jdiv
/div
/div
/div

4. Locked Profile

In this problem, you must create a JS program which shows and hides the additional information about users, which
you can find by making a GET request to the server at address:

http://localhost:3030/jsonstore/advanced/profiles

The response will be an object with the information for all users. Create a profile card for every user and display it
on the web page. Every item should have the following structure:

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

g SOﬂuni Follow us: O o @ o @ O @ Page 6 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

<main id="main">»

<div class="profile"»

<label>Lock</label>
<input type="radioc"” name="userllocked" value="lock" checked>
<labels>Unlock</labels
<input type="radio" name="userllocked" value="unlock”><br:>
<hr>
<label>Username</label>
<input type="text" namz="userlUsername" wvalue="John" disablad readonly />
<div id="userlHiddenFislds">»
<hr»
<label»Email:</labelx
<input type="email™ name="userlEmail" value="john@users.bg” disabled readonly />
<label»Age:</label>
<input type="email” name="userlhge” wvzlue="31" disabled readonly />
</div»
<button»Show more</button>
</div>

<fmain>

O
Oy e i

Lock o Unlock o

Locl & Unlock o Lock & Unlock o
Usemame Username Username
s Yore

When one of the [Show more] buttons is clicked, the hiden information inside the div should be shown, only if the
profile is not locked! If the current profile is locked, nothing should happen.

Lock ® Unlock o Lock o Unlock® Lock o Unlock o
Username Username Username
Fstar Atary

Jotn
Email:
ge:

]

— i

If the hidden information is displayed and we lock the profile again, the [Hide it] button should not be working!
Otherwise, when the profile is unlocked and we click on the [Hide it] button, the new fields must hide again.

5. Accordion

An html file is given and your task is to show more/less information for the selected article. At the start you should
do a GET request to the server at adress: http://localhost:3030/jsonstore/advanced/articles/list
where the response will be an object with the titles of the articles.

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.
Ll
SoftUni

o © O 0B OO OO @ page 0111

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

By clicking the [More] button for the selected article, it should reveal the content of a hidden div and changes the
text of the button to [Less]. Obtain the content by making a GET request to the server at adress:
http://localhost:3030/jsonstore/advanced/articles/details/:id where the response will be an
object with property id, title, content. When the same button is clicked again (now reading Less), hide the div and
change the text of the button to More. Link action should be toggleable (you should be able to click the button
infinite amount of times).

Example

Scalable Vector Graphics Open standard

Unix | MORE | ALGOL
Scalable Vector Graphics LESS
Scalable Vector Graphics (SVG) is an Extensible
Markup Language (XML)-based vector image
format for two-dimensional graphics with support
for interactivity and animation. The SVG specification
is an open standard developed by the World Wide
Web Consortium (W3C) since 1999, Open standard

| MORE |
Unix m ALGOL m

Every item should have the following structure:

<section id="main">

<div class="accordion™>»
<div class="head">»
Scalable Vector Graphics</span»
<butten class="button" id="ee9823ab-c2e8-4a14-b998-8c22ec246bd3">Mored/button>
<fdiv>
<div class="extra">»
<p»Scalable Vector Graphics (SVG) is an Extensible Markup Language (XML)-based vector image format for
two-dimensional graphics with support for interactivity and animation. The SVG spacification is an
open standard developed by the World Wide Web Consortium (W3C) since 1999.</p>
</div»
</div>

</section>

You are allowed to add new attributes, but do not change the existing ones.

6. Blog

Write a program for reading blog content. It needs to make requests to the server and display all blog posts and
their comments.
Request URL’s:

Posts - http://localhost:3030/jsonstore/blog/posts

Comments - http://localhost:3030/jsonstore/blog/comments

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:U“i Follow us: O o @ o @ o Page 8 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

The button with ID "btnLoadPosts" should make a GET request to "/posts". The response from the server will
be an Object of objects.

v {-LhdbZ3IND3RhWAIUGTN :

proto_: Object

» -LhdbZ31ND3Rhwa UGN :
» -Lhde-Ttz9-KiWduvhel:
» -LhdcLmyARLEB1bsSvjZ:
» -LhdccRylr_7UCPtclmM:
>

{-}s

{body:
{body:
{body:
{body:

script.js:19
Lhde-Ttz2-Kilwduvhew: {.}, -LhdcLmyARLEB1bsSviZ: {..}, -LhdccRyWr_7UCPtcimM: {..}}
"fn asynchronous model allows multiple things to ha.he result (for example, the data read from disk).", id: "rrt87.
"In a synchronous programming model, things happen .stops your program for the time the action takes.", id: "rrt87.
"One approach to asynchronous programming is to mak. the callback function is called with the result."”, id: "rrt87.
"Working with abstract concepts is often easier whe.turn an object that represents this future event.", id: "rrt87..

Each object will be in the following format:

{

body: {postBody},

id: {postId},

title: {postTitle}

}

Create an <option> for each post using its object key as value and current object title property as text inside the

node with ID "posts'

All Posts

Load Posts ASYNCHROMOUS PROGRAMMING v

/select:

v<select id="posts":
coption value="-LhdbZ31ND3Rhw41UGmN" >ASYNCHRONOUS PROGRAMMING</option
‘option value="-Lhdc-Ttz29-KiW9uvh6W" >SYNCHRONOUS PROGRAMMING</optiaon:
coption value="-LhdcLmyARLEB1bsSvjZ" >CALLBACKS</option>
coption value="-LhdccRyWr 7UCPtclmM">PROMISES</option>

When the button with ID "btnViewPost" is clicked, a GET request should be made to:

e "/comments/:id" to obtain the selected post (from the dropdown menu with ID "posts") - The following
request will return a single object as described above.

e "/comments - to obtain all comments. The request will return a Object of objects.

¥ -Lhdewt0211rzuThi1M]:
b -LhdfHFg8dNxK -gUaukL:
b -LhdfVgdIDKaBCTt-dQZ:
» -LhdfusXolmPycgRRF-3:
¥ -Lhdg@x8QG-j2vnNUh15:
¥ -LhdgPKif5sYTYNE15Q:
* -LhdgZumSUCFEenSvlUEg:
¥ -LhdghH3EHO1FrB@sCCp:
» __proto__: Object

v {-LhdewtO2(JrzuThilMi: {..},

{id:
{id:
{id:
{id:
{id:
{id:
{id:

VM28B5:1

-LhdfHFg8dNxK-qUaukL: {..}, -LhdfVg4IDKa@Cft-dQZ: {.}, -LhdfulXolmPycgRRf-3: {..}, -Lhdg@xBQG-j2vnNUhL5: {.}, ..}
"rrt8713kjx1jda5r", postld: "rrt875tgjxlimggb”, text: "So good article. Nice!"}

"rrt878p8jxijdgze”, postld: "rrt875tgjxlimggb”, text: "Rly helpful. Thanks!"}

“rrt879ccijx1jdod3”, postld: “rrtB79rkjxlimol2”, text: "Mow I understand it... Thanks!™}
"rrz123cjxhhfdotid43”, postId: "rrt
"rrzl23smshhfdoti543™, postId: "rrt
“rrz35smshhfdfti543", postId: "rrt87btcjxlimxui”
"rrz3Ssshshfdftidd4"”, postld:
{id: 7

xlimswr”, text: "Amazing article! Good job!"}
Ttwjxlimswr", text: "You are the best! +1 For this Article!™}

, text: "Good job my man! You are the best!"}

‘rre87btcixlimxui”, text: "AMAZING ARTICLE! It's was pleasure to read it! Thanks bre!"}
rrzd@dsmshshfdftided"”, postId: "rrt87btcjxlimxui”, text: "It was ok, next time you will crush them!"}

Each object will be in the following format:

{

id: {commentId},
postId: {postId},
text: {commentText}

}

You have to find this comments that are for the current post (check the postld property)

g SoftUni

©

SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

o © O 0B OO OO @ pagesorts

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

Display the post title inside h1 with ID "post-title" and the post content inside p with ID "post-body". Display
each comment as a <11i> inside ul with ID "post-comments". Do not forget to clear its content beforehand.

the result (for example, the data read from disk).

Comments

* So good article. Nice!
¢ Rly helpful. Thanks!

ASYNCHRONOUS PROGRAMMING

An asynchronous maodel allows multiple things to happen at the same time. When you start an action,
your program continues to run. When the action finishes, the program is informed and gets access to

hl id="post-title">ASYNCHRONOUS PROGRAMMING</hl
¥ <p id="post-body

data read from disk)."
/p:
h2>Comments</h2
v<ul id="post-comments”:
1i id="rrt8713kjxljda5r">50 good article. Nicel</1li
1i id="rrt878p8jxljdgze” >Rly helpful. Thanks!</li:
ful

"An asynchronous model allows multiple things to happen at the same time. When you start an action, your program
continues to run. When the action finishes, the program is informed and gets access to the result (for example, the

Submitting Your Solution

Place in a ZIP file the content of the given resources including your solution. Exclude the node_modules folder if

there is one. Upload the archive to Judge.

I

TNarTe Late THodiried TYHE P i
app e meincumoal. e 1 KB
@ index 3 Open with Code 1K8
7] styles @& Move to OneDrive 1 KB
Ea Scan with Microsoft Defender...
& Share
4, Tortoise5VN 5
B8 Add to archive...
B8 Add to "06.Blog.rar”
EH Compress and email...
" Compress to "06.Blog.rar” and email
#% Share with Catch! >
Send to > Bluetooth device
Cut ¢ Compressed (zipped) folder
Copy B Desktop {create shortcut)
| & Documents
Create shortcut > S
=) Fax recipient
Delete z y o
*| Mail recipient
Rename .
| @ TeamViewer
Properties i

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

SOﬂ:Uni Follow us: O o @ o @ Q @

Page 10 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

Submit a solution

01, Bus Stop

02.Bus Scheduls | 03 Forecaster 04, Locked Profile 05 Accordion | (6.Blog | Add task
06.BI o
= Og - o “ Solubons » Exercize » DfBlog » v Search g
Adminlstratic 2 7
1
/ @ OneDrive - Persor]
Select files.. o @
-

Towed T 2l . s &
ow eexrer.ts or_\s.z.p W 30 Objects B 5
Allowed working tm_\e: Z00.000 sec. I Desitop
Allowed memary: 1600 MB 21 Docu
Size limit: 160000.00 KB &l Documents
Checker: Trim @ & Downloads

J Music
[Pictures
B videos
i Local Disk (C)
= Local Disk (D4
|, Laeal Disk (B9 (C
Points Time and mer|
| o Network L2
nlla o S File narne: A Files

= o

06.Blog

Administration |
Select files...

06.Blog.zip *

Allowed file extensions: zip

Allowed working time: 300.000 sec.
Allowed memory: 16.00 MB

Size limit: 160000.00 KB

Checker: Trim @

~

JS Projects Mocha U...

Submit

g SoftUni

Follow us: O

080O600O&

© SoftUni — https://softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Page 11 of 11

https://softuni.org/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercise: Asynchronous Programming
	1. Bus Stop
	Examples

	2. Bus Schedule
	Examples

	3. Forecaster
	Examples

	4. Locked Profile
	5. Accordion
	6. Blog
	Submitting Your Solution

