
Exercises: Iterators and Comparators
This document defines the exercises for the "Java Advanced" course @ SoftUni Global.
Please submit your solutions (source code) to all below-described problems in Judge.
ListyIterator
Create a class ListyIterator, it should receive the collection of Strings which it will iterate, through its constructor. You should store the elements in a List. The class should have three main functions:
· Move - should move an internal index position to the next index in the list, the method should return true if it successfully moved and false if there is no next index.
· HasNext - should return true if there is a next index and false if the index is already at the last element of the list.
· Print - should print the element at the current internal index, calling Print on a collection without elements should throw an appropriate exception with the message "Invalid Operation!".
By default, the internal index should be pointing to the 0th index of the List. Your program should support the following commands:
	Command
	Return Type
	Description

	Create {e1 e2 …}
	void
	Creates a ListyIterator from the specified collection. In case of a Create command without any elements, you should create a ListyIterator with an empty collection.

	Move
	boolean
	This command should move the internal index to the next index.

	Print
	void
	This command should print the element at the current internal index.

	HasNext
	boolean
	Returns whether the collection has the next element.

	END
	void
	Stops the input.

Input
Input will come from the console as lines of commands. The first line will always be the "Create" command in the input, and it will always be the first command passed. The last command received will always be the "END" command.
Output
[bookmark: _GoBack]For every command from the input (with the exception of the "END" and "Create" commands), print the result of that command on the console, each on a new line. In the case of "Move" or "HasNext" commands, print the returned value of the method, in the case of a "Print" command you don't have to do anything additional as the method itself should already print on the console. Your program should catch any exceptions thrown because of validations (calling Print on an empty collection) and print their messages instead.
Constraints
· The number of commands received will be between [1…100].
Examples
	Input
	Output

	Create
Print
END
	Invalid Operation!

	Create Peter George
HasNext
Print
Move
Print
END
	true
Peter
true
George

Collection
Using the ListyIterator from the last problem, extend it by implementing the Iterable interface, and implement all methods desired by the interface manually. Add a new method to the class PrintAll(), the method should foreach the collection and print all elements on a single line separated by a space.
Input
Input will come from the console as lines of commands. The first line will always be the "Create" command in the input and it will always be the first command passed. The last command received will always be the "END" command.
Output
For every command from the input (with the exception of the "END" and "Create" commands) print the result of that command on the console, each on a new line. In the case of Move or HasNext commands print the returned value of the method, in the case of a "Print" command, you don't have to do anything additional as the method itself should already print on the console. In the case of a "PrintAll" command, you should print all elements on a single line separated by spaces. Your program should catch any exceptions thrown because of validations and print their messages instead.
Constraints
· Do not use the built-in iterators!
· The number of commands received will be between [1…100].
Examples
	Input
	Output

	Create Sam George Peter
PrintAll
Move
Move
Print
HasNext
END
	Sam George Peter
true
true
Peter
false

	Create 1 2 3 4 5
Move
PrintAll
END
	true
1 2 3 4 5

Stack Iterator
Since you have passed the basics algorithms course, now you have a task to create your custom stack. You are aware of the Stack structure. There is a collection to store the elements and two functions (not from the functional programming) - to push an element and to pop it. Keep in mind that the first element, which is popped, is the last in the collection. The push method adds an element to the top of the collection, and the pop method returns the top element and removes it.
Write your custom implementation of Stack<Integer> and implement your custom iterator. There is a way that IntelliJ could help you, your Stack class should implement the Iterable<Integer> interface, and your Iterator Class should implement the Iterator<Integer> interface. Your Custom Iterator should follow the rules of the Abstract Data Type - Stack. As we said, the first element is the element at the top and so on. Iterators are used only for iterating through the collection, they should not remove or mutate the elements.
Input
The input will come from the console as lines of commands. Commands always will be "Push", "Pop" and "END", followed by integers for the push command and no other input for the pop command.
Output
When you receive "END", the input is over. Foreach the stack twice and print all elements. Each element should be on a new line.
Constraints
· The elements in the push command will be valid integers between [2-32…232-1].
· There will be no more than 16 elements in the "Push" command.
· [bookmark: __DdeLink__1065_986510478]If the "Pop" command could not be executed as expected (e.g., no elements in the stack), print on the console: "No elements".
Examples
	Input
	Output

	Push 1, 2, 3, 4
Pop
Pop
[bookmark: __DdeLink__1030_986510478]END
	2
1
2
1

	Push 1, 2, 3, 4
Pop
Pop
Pop
Pop
Pop
END
	No elements

Froggy
Let's play a game. You have a tiny little Frog and a Lake with numbers. The Lake and its numbers, you will get by an input from the console. Imagine, your Frog belongs to the Lake. The Frog jumps only when the "END" command is received. When the Frog starts jumping, print on the console each number the Frog has stepped over. To calculate the jumps, use the guidelines:
[bookmark: __DdeLink__1243_1099707159]The jumps start from the 0th index. And follows the pattern - first, all even indexes in ascending order(0->2->4->6 and so on) and then all odd indexes in ascending order (1->3->5->7 and so on). Consider the 0th index as even.
Long story short: Create a Class Lake, it should implement the interface - Iterable. Inside the Lake, create a Class - Frog and implement the interface Iterator. Keep in mind that you will be given integers only.
Input
The input will consist of two lines. First line - the initial numbers of the lake, separated by a comma and a single space. The second line - command is "END".
Output
When you receive "END", the input is over. Foreach through the collection of numbers the Frog has jumped over and prints each element.
The output should be printed on a single line in the format:
"{number}, {second number}, {third number}, …"
Constraints
· Lake's numbers will be valid integers in the range [2-32…232-1].
· The command will always be valid - "END".
Examples
	Input
	Output

	1, 2, 3, 4, 5, 6, 7, 8
[bookmark: __DdeLink__1246_1099707159]END
	1, 3, 5, 7, 2, 4, 6, 8

	1, 2, 3
END
	1, 3, 2

Comparing Objects
There is a Comparable interface, but probably you already know. Your task is simple. Create a Class Person. Each person should have a name, age, and town. You should implement the interface - Comparable and try to override the compareTo method. When you compare two people, first you should compare their names, after that - their age and last but not least - compare their town.
Input
On single lines, you will be given people in the format:
"{name} {age} {town}"
Collect them till you receive "END".
After that, you will receive an integer N - the Nth person in your collection.
Output
On the single output line, you should bring statistics, how many people are equal to him, how many people are not equal to him, and the total number of people in your collection.
Format:
· "{number of equal people} {number of not equal people} {total number of people}"
If there are no equal people, print: "No matches".
Constraints
· Names, ages, and addresses will be valid.
· Input number will be always а valid integer in the range [2…100].
Examples
	Input
	Output

	Peter 22 Varna
George 14 Sofia
END
[bookmark: __DdeLink__1014_1884916193][bookmark: __DdeLink__1021_1884916193]2
	No matches

	Peter 22 Varna
George 22 Varna
George 22 Varna
END
[bookmark: __DdeLink__1016_1884916193][bookmark: __DdeLink__1019_1884916193][bookmark: __DdeLink__1025_1884916193]2
	2 1 3

Strategy Pattern
An interesting pattern you may have heard of is the Strategy Pattern, if we have multiple ways to do a task (let's say sort a collection) it allows the client to choose the way that most fits his needs. A famous implementation of the pattern in Java is the Collections.sort() method that takes a Comparator.
Create a class Person that holds name and age. Create 2 Comparators for Person (classes that implement the Comparator<Person> interface). The first comparator should compare people based on the length of their name as a first parameter, if 2 people have a name with the same length, perform a case-insensitive compare based on the first letter of their name instead. The second comparator should compare them based on their age. Create 2 TreeSets of type Person, the first should implement the name comparator, and the second should implement the age comparator.
Input
On the first line of input, you will receive a number N. On each of the next N lines, you will receive information about people in the format "{name} {age}". Add the people from the input into both sets (both sets should hold all the people passed in from the input).
Output
Foreach the sets and print each person from the set on a new line in the same format that you received them. Start with the set that implements the name comparator.
Constraints
· A person's name will be a string that contains only alphanumerical characters with a length between [1…50] symbols.
· A person's age will be a positive integer between [1…100].
· The number of people N will be a positive integer between [0…100].
Examples
	Input
	Output

	3
Peter 20
George 100
[bookmark: __DdeLink__1130_810317894]Sam 1
	Sam 1
Peter 20
George 100
Sam 1
Peter 20
George 100

	5
John 17
Alex 33
Samuel 25
Sam 99
[bookmark: __DdeLink__1162_810317894]George 3
	Sam 99
Alex 33
John 17
George 3
Samuel 25
George 3
John 17
Samuel 25
Alex 33
Sam 99

*Equality Logic
Create a class Person holding name and age. A person with the same name and age should be considered the same, override any methods needed to enforce this logic. Your class should work with both standards and hashed collections. Create a TreeSet and a HashSet of type Person.
Input
On the first line of input, you will receive a number N. On each of the next N lines, you will receive information about people in the format "{name} {age}". Add the people from the input into both sets (both sets should hold all the people passed in from the input).
Output
The output should consist of exactly 2 lines. On the first, you should print the size of the TreeSet, and on the second - the size of the HashSet.
Constraints
· A person's name will be a string that contains only alphanumerical characters with a length between [1…50] symbols.
· A person's age will be a positive integer between [1…100].
· The number of people N will be a positive integer between [0…100].
Examples
	Input
	Output

	4
Peter 20
Petter 20
George 15
[bookmark: __DdeLink__1165_810317894]Peter 21
	4
4

	7
George 17
george 17
Peter 25
George 18
George 17
Petter 25
[bookmark: __DdeLink__1169_810317894][bookmark: __DdeLink__1167_810317894]Peter 25
	5
5

Hint
You should override both the equals and hashCode methods. You can check online for the implementation of hashCode - it doesn't have to be perfect, but it should be good enough to produce the same hash code for objects with the same name and age and different enough hash codes for objects with different names and/or age.
*Pet Clinics
You are a young and ambitious owner of Pet Clinics Holding. You ask your employees to create a program that will store all information about the pets in the database. Each pet should have a name, age, and kind.
Your application should support a few basic operations such as creating a pet, creating a clinic, adding a pet to a clinic, releasing a pet from a clinic, printing information about a specific room in a clinic, or printing information about all rooms in a clinic.
Clinics should have an odd number of rooms, attempting to create a clinic with an even number should fail and throw an appropriate exception.
Accommodation Order
For example, let us take a look at a clinic with 5 rooms. The first room where a pet will be treated is the central one (room 3). Therefore, the order in which an animal is entering is: the first animal is going to the centre(3) room, and after that, the next pets are entering first to the left (2) and then to the right (4) room. The last rooms in which pets can enter are room 1 and room 5. In case a room is already occupied, we skip it and go to the next room in the above order. Your task is to model the application and make it support some commands.
The first pet enters room 3. 					-> 	1 2 3 4 5
After that, the next pet enters room 2. 				-> 	1 2 3 4 5
The third pet would enter room 4. 				-> 	1 2 3 4 5
And the last two pets would be going to rooms - 1 and 5. 	->	1 2 3 4 5
Now when we have covered adding the pets, it is time to find a way to release them. The process of releasing them is not so simple, when the release method is called, we start from the centre room (3) and continue right (4, 5… and so on) until we find a pet or reach the last room. If we reach the last room, we start from the first (1) and again move right until we reach the centre room (3). If a pet is found, we remove it from the collection, stop further search and return true, if a pet is NOT found, the operation returns false.
When a print command for a room is called, if the room contains a pet, we print the pet on a single line in the format "{pet name} {pet age} {pet kind}". Alternatively, if the room is empty, print "Room empty" instead. When a print command for a clinic is called, it should print all rooms in the clinic in order of their number.
Commands
	Command
	Return Type
	Description

	Create Pet {name} {age} {kind}
	void
	Creates a pet with the specified name and age.
(true if the operation is successful and false if it isn't)

	Create Clinic {name} {rooms}
	void
	Creates a Clinic with the specified name and number of rooms.
(if the rooms are not odd, throw an exception)

	Add {pet's name} {clinic's name}
	boolean
	This command should add the given pet to the specified clinic.
(true if the operation is successful and false if it isn't).

	Release {clinic's name}
	boolean
	This command should release an animal from the specified clinic.
(true if the operation is successful and false if it isn't).

	HasEmptyRooms {clinic’s name}
	boolean
	Returns whether the clinic has any empty rooms.
(true if it has and false if it doesn't).

	Print {clinic's name}
	void
	This command should print each room in the specified clinic, ordered by room number.

	Print {clinic's name} {room}
	void
	Prints on a single line the content of the specified room.

Input
On the first line, you will be given an integer N - the number of commands you will receive. On each of the next N lines, you will receive a command.
Output
For each command with a boolean return type received through the input, you should print its return value on a separate line. In case of a method throwing an exception (such as trying to create a clinic with an even number of rooms or trying to add a pet that doesn't exist), you should catch the exceptions and instead print "Invalid Operation!".
· The "Print" command with a clinic and a room should print information for that room in the format specified above.
· The "Print" command with only a clinic should print information for each room in the clinic in order of their numbers.
Constraints
· The number of commands N - will be a valid integer between [1…1000], no need to check it explicitly.
· Pet names, Clinic names, and kinds will be strings consisting only of alphabetical characters with a length between [1…50] characters.
· Pet age will be a positive integer between [1…100].
· Clinic rooms will be a positive integer between [1…101].
· Room number in a "Print" command will always be between 1 and the number of rooms in that Clinic.
· Input will consist only of correct commands and always have the correct type of parameters.
Example
	Input
	Output

	9
Create Pet George 7 Cat
Create Clinic Sofia 4
Create Clinic Sofiq 1
HasEmptyRooms Sofiq
Release Sofiq
Add George Sofiq
HasEmptyRooms Sofiq
Create Pet Sharo 2 Dog
Add Sharo Sofiq
	Invalid Operation!
true
false
true
false
false

	8
Create Pet George 7 Cat
Create Pet Sam 1 Cata
Create Clinic Rim 5
Add George Rim
Add Sam Rim
Print Rim 3
Release Rim
[bookmark: __DdeLink__1203_810317894][bookmark: __DdeLink__1207_810317894]Print Rim
	true
true
George 7 Cat
true
Room empty
Sam 1 Cata
Room empty
Room empty
Room empty

***Linked List Traversal
You need to write your simplified implementation of a generic Linked List that has an Iterator. The list should support the Add and Remove operations, should reveal the amount of elements it has with a getSize function and should have an implemented iterator (should be foreachable). The add method should add the new element at the end of the collection. The remove method should remove the first occurrence of the item starting at the beginning of the collection, if the element is successfully removed, the method returns true, alternatively, if the element passed is not in the collection, the method should return false. The getSize method should return the number of elements currently in the list. The iterator should iterate over the collection starting from the first entered element.
Input
On the first line of input, you will receive a number N. On each of the next N lines, you will receive a command in one of the following formats:
· "Add {number}" - adds a number to your linked list.
· "Remove {number}" - removes the first occurrence of the number from the linked list. If there is no such element, this command leaves the collection unchanged.
Output
The output should consist of exactly 2 lines. First, you should print the result of calling the getSize function on the Linked list. On the next lines, you should print all elements of the collection by calling foreach on the collection.
Constraints
· All numbers in the input will be valid integers between [2-32…232-1].
· All commands received through the input will be valid (will be only "Add" or "Remove").
· The number N will be a positive integer between [1…500].
Examples
	Input
	Output

	5
Add 7
Add -50
Remove 3
Remove 7
[bookmark: __DdeLink__1239_810317894]Add 20
	2
-50 20

	6
Add 13
Add 4
Add 20
Add 4
Remove 4
[bookmark: __DdeLink__1271_810317894]Add 4
	4
13 20 4 4

Hint
You can use the Linked List from your Workshop.
[image:]Follow us:
[bookmark: _Hlk24191091]© SoftUni – softuni.org. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.
[image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:]
Page 11 of 11

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.png

image2.png

image3.png

image4.png

